34 research outputs found

    Development of Upper Body Coordination During Sitting in Typically Developing Infants

    Get PDF
    Our goal was to determine how the actions of the thorax and the pelvis are organized and coordinated to achieve independent sitting posture in typically developing infants. The participants were 10 typically developing infants who were evaluated longitudinally from first onset of sitting until sitting independence. Each infant underwent nine testing sessions. The first session included motor evaluation with the Peabody test. The other eight sessions occurred over a period of 4 mo where sitting behavior was evaluated by angular kinematics of the thorax and the pelvis. A physical therapist evaluated sitting behavior in each session and categorized it according to five stages. The phasing relationship of the thorax and the pelvis was calculated and evaluated longitudinally using a one-way analysis of variance. With development, the infants progressed from an in-phase (moving in the same direction) to an out-of-phase (moving in an opposite direction) coordinative relationship between the thorax and the pelvis segments. This change was significant for both sagittal and frontal planes of motion. Clinically, this relationship is important because it provides a method to quantify infant sitting postural development, and can be used to assess efficacy of early interventions for pediatric populations with developmental motor delays

    Development of postural adjustments during reaching in typically developing infants from 4 to 18 months

    Get PDF
    Knowledge on the development of postural adjustments during infancy, in particular on the development of postural muscle coordination, is limited. This study aimed at the evaluation of the development of postural control during reaching in a supported sitting condition. Eleven typically developing infants participated in the study and were assessed at the ages of 4, 6, 10 and 18 months. We elicited reaching movements by presenting small toys at an arm’s length distance, whilst activity of multiple arm, neck and trunk muscles was recorded using surface EMG. A model-based computer algorithm was used to detect the onset of phasic muscle activity. The results indicated that postural muscle activity during reaching whilst sitting supported is highly variable. Direction-specific postural activity was inconsistently present from early age onwards and increased between 10 and 18 months without reaching a 100 % consistency. The dominant pattern of activation at all ages was the ‘complete pattern’, in which all direction-specific muscles were recruited. At 4 months, a slight preference for top-down recruitment existed, which was gradually replaced by a preference for bottom-up recruitment. We conclude that postural control during the ecological task of reaching during supported sitting between 4 and 18 months of age is primarily characterized by variation. Already from 4 months onwards, infants are—within the variation—sometimes able to select muscle recruitment strategies that are optimal to the task at hand

    Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults: a methodological report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biomechanical measures of postural stability, while generally useful in neuroscience and physical rehabilitation research, may be limited in their ability to detect more subtle influences of attention on postural control. Approximate entropy (ApEn), a regularity statistic from nonlinear dynamics, recently has demonstrated relatively good measurement precision and shown promise for detecting subtle change in postural control after cerebral concussion. Our purpose was to further explore the responsiveness of ApEn by using it to evaluate the immediate, short-term effect of secondary cognitive task performance on postural control in healthy, young adults.</p> <p>Methods</p> <p>Thirty healthy, young adults performed a modified version of the Sensory Organization Test featuring single (posture only) and dual (posture plus cognitive) task trials. ApEn values, root mean square (RMS) displacement, and equilibrium scores (ES) were calculated from anterior-posterior (AP) and medial-lateral (ML) center of pressure (COP) component time series. For each sensory condition, we compared the ability of the postural control parameters to detect an effect of cognitive task performance.</p> <p>Results</p> <p>COP AP time series generally became more random (higher ApEn value) during dual task performance, resulting in a main effect of cognitive task (p = 0.004). In contrast, there was no significant effect of cognitive task for ApEn values of COP ML time series, RMS displacement (AP or ML) or ES.</p> <p>Conclusion</p> <p>During dual task performance, ApEn revealed a change in the randomness of COP oscillations that occurred in a variety of sensory conditions, independent of changes in the amplitude of COP oscillations. The finding expands current support for the potential of ApEn to detect subtle changes in postural control. Implications for future studies of attention in neuroscience and physical rehabilitation are discussed.</p

    Dynamical structure of center-of-pressure trajectories in patients recovering from stroke

    Get PDF
    Contains fulltext : 50308.pdf (publisher's version ) (Closed access)In a recent study, De Haart et al. (Arch Phys Med Rehabil 85:886-895, 2004) investigated the recovery of balance in stroke patients using traditional analyses of center-of-pressure (COP) trajectories to assess the effects of health status, rehabilitation, and task conditions like standing with eyes open or closed and standing while performing a cognitive dual task. To unravel the underlying control processes, we reanalyzed these data in terms of stochastic dynamics using more advanced analyses. Dimensionality, local stability, regularity, and scaling behavior of COP trajectories were determined and compared with shuffled and phase-randomized surrogate data. The presence of long-range correlations discarded the possibility that the COP trajectories were purely random. Compared to the healthy controls, the COP trajectories of the stroke patients were characterized by increased dimensionality and instability, but greater regularity in the frontal plane. These findings were taken to imply that the stroke patients actively (i.e., cognitively) coped with the stroke-induced impairment of posture, as reflected in the increased regularity and decreased local stability, by recruiting additional control processes (i.e., more degrees of freedom) and/or by tightening the present control structure while releasing non-essential degrees of freedom from postural control. In the course of rehabilitation, dimensionality stayed fairly constant, whereas local stability increased and regularity decreased. The progressively less regular COP trajectories were interpreted to indicate a reduction of cognitive involvement in postural control as recovery from stroke progressed. Consistent with this interpretation, the dual task condition resulted in less regular COP trajectories of greater dimensionality, reflecting a task-related decrease of active, cognitive contributions to postural control. In comparison with conventional posturography, our results show a clear surplus value of dynamical measures in studying postural control

    Case Study I: Curve Fitting

    No full text
    corecore